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Motivation
Algorithms are used to make Decisions in Strategic Environments
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Pricing

 Algorithms Automated Bidding




Motivation
Algorithms are Strategies in Repeated Games
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What makes learning to play games difficult (and interesting)?


•Adaptive and temporal strategies of the other player(s) makes the 
environment non-stationary. 

•Without knowing the nature of the other players, impossible to find 
the optimal algorithm/ policy.

What makes learning to play games more tractable than 
arbitrary adversarial environments?


•Opponents behavior might reveal their nature. 
•With rational opponents, the environment is not arbitrary since they 

are consistently optimizing for some (potentially unknown) 
objective. 



Algorithms as Strategies
For Repeated Games
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Scenario : Algorithms for Repeated Games

Theory CS Answer : No-Regret Algorithms! 

Fact : All players playing no-(swap)-regret 
leads to convergence on average to (Coarse) 

Correlated Equilibria 

Some Issues and Questions

• Fact: No-Regret is not always a best response to No-Regret. 
• What does an (algorithmic) best-response to no-regret look like? 
• What behavior can interaction between algorithms induce?

• Pareto-Optimality

• Non-Manipulability

Sneak Peek

Central Question : No-regret algorithms (and variants) represent the 
best we can do for arbitrary online environments. Can we ask for 

stronger properties in repeated games?



The Model
Learners and Optimizers





L O

Two Player Repeated Games
Two player asymmetric setup with one 
player called the “learner” and the other 
called the “optimizer”

•The Learner has an action set  

•The Optimizer has an action set  

•They simultaneously play actions in the t-th round 
and then observe the other player’s action. 

•Bilinear utility functions 

Δm

Δn

xt, yt

uL, uO



The Learner Algorithm

First t-1 optimizer 
actions 

Learning Algorithm 



The Learner Algorithm

The learner publicly commits 
to a learning algorithm

L O



The Optimizer’s Role

OL

• The optimizer has full information about the 
environment and plays the optimal sequence of 
moves to maximize their private payoff 

• This sequence induces a particular transcript of 
play maximizing the optimizer payoff and thus 
also fixes the learner’s payoff



Best-responses to Algorithms

O



Our Question

First t-1 optimizer 
actions 

Learning Algorithm 

Given this setup, what learning algorithm should the learner commit to to 
maximize their own (limit average) payoff ?



?
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Full-information Setting

• Knowing the optimizer’s payoff upfront 
implies the existence of a well defined 
bilevel optimization problem for the 
learner. 

• In particular, the learner can assess the 
payoff associated with any commitment 
by simulating a rational optimizer 
response.
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The Stackelberg Equilibrium Problem
With algorithms as strategies
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Learning Setting

● Every algorithm induces different 
outcomes depending on the 
optimizer utility 

● Need new techniques to handle this



What are good learning algorithms to use?

Optimistic: Pointwise optimality against all optimizers

Standard benchmark: No-Regret on every transcript

Our answer: No-Regret + Pareto-Optimality

Multiplicative 
weights, etc.



No-Regret Algorithms

Competitive with the best fixed action in hindsight on 
every transcript

•Existence implied by the minimax theorem. 

•Multiple Algorithms exist — including 
multiplicative weights, Follow-the-Perturbed-
Leader, Gradient Descent, etc. 

•Efficient algorithms exist even for some 
problems with large action spaces — such as 
online shortest path



Pareto-Optimality
Comparing Algorithms : Three Possible Outcomes 

•Each learning algorithm has an associated infinite 
profile of payoffs measured against all possible 
optimizers. 

•A Pareto-Optimal learning algorithm has a payoff 
profile on the Pareto-frontier. 

•All other algorithms are Pareto-dominated, and thus 
there is a natural reason to never use such 
algorithms.

Question: Does a non-trivial Pareto-dominated algorithm exist?



Result 1 : Popular No-Regret Algorithms are Pareto-Dominated

Theorem 1 : All Follow-the-Regularized-Leader algorithms, which include Multiplicative Weights, FTPL, Lazy 
Gradient Descent, are Pareto-dominated. 

B

A

C

SAB

SAB

SBC

SAC

HAB

HBC

SBC

HAC SAC

• Results based on a (partial) characterization of best-response 
sequences against FTRL algorithms. 

• These algorithms have lacunae (that can be eliminated) due to a 
property they share, called the “mean-based” property. 

• The dominating algorithms do not necessarily have a succinct 
representation.



Result 2 : No-Swap-Regret Algorithms are Pareto-Optimal

Theorem 2 : All No-Swap-Regret algorithms are Pareto-Optimal. Additionally, all no-swap-regret algorithms 
are strategically equivalent in terms of the limit average payoff.

Competitive with the best fixed action on the 
subsequence that action i is played, for all i 
in [n].

• NSR is a strengthening of the no-regret 
property. 

•First explicit construction by Blum and Mansour 
(06). 

• Recent results (DDFG 24 and PR 24) show 
fundamentally different constructions that 
reduce no-swap-regret to no-regret.



Related Work
Non-Manipulability
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Non-Manipulability

O

A learning algorithm is non-manipulable if the 
optimizer has a best-response that is static 

over time. 

Useful as a stability property for applications: 

For eg: Against a NSR bidder in a repeated auction, setting 
reserve prices using the Myerson Distribution is optimal!

Known Results — DSS 19 show that  

1. All NSR algorithms are non-manipulable. 

2. Mean-based NR algorithms (such as MW) are 
manipulable.

Our Strengthening: Any non-manipulable NR 
algorithm must be a NSR algorithm.

Ongoing work : Tight characterization of non-
manipulability beyond normal-form games



Space of Algorithms

Pareto-Optimal Pareto-Dominated

No-Regret

Linear-Regret

All NSR 
algorithms

All FTRL algorithms

Non-Manipulable

•An infinite continuum of NR + PO as well 
as NR + Pareto-Dominated 

•  Unresolved status : Projected Gradient 
Descent, Regret Matching 

•Different results for special subclasses of 
games, for eg: repeated first-price 
auctions



Inverse Blackwell Approachability



Minimax Theorems

Von Neumann Minimax Theorem


i.e. No difference between going first and second

miny∈Ymaxx∈X f(x, y) = maxx∈Xminy∈Y

Alternative Statement : Let v = 
. There exist an action 

 such that for all actions , 
miny∈Ymaxx∈X f(x, y)
x ∈ X y ∈ Y
f(x, y) ∈ [v, ∞]

A Vector Valued Minimax Theorem? 

Consider a bilinear vector valued function f : X × Y → ℝk

S

A closed, convex set S is said to be 
response-satisfiable if for all , 
there exists  such that 

, i.e. player 1 can 
guarantee an outcome in S by going 
second

y ∈ Y
x ∈ X

f(x, y) ∈ S

Can Player 1 guarantee an outcome in S by going first instead? 

No, But…

Consider a bilinear function  
for convex action sets  and .

f : X × Y → ℝ
X Y



Blackwell Approachability Theorem

A Vector valued Minimax Theorem in Algorithm Space 

Consider a bilinear vector valued function  for a 
repeated vector valued game with actions  in the t-th round

f : X × Y → ℝk

xt, yt

S

A closed, convex set S is said to be 
response-satisfiable if for all , there 
exists  such that , i.e. player 
1 can guarantee an outcome in S by going 
second

y ∈ Y
x ∈ X f(x, y) ∈ S

Theorem (Informal) : There exists  an algorithm for player 1 such 
that for any induced transcript of play, the limit average function 
value vector approaches S, i.e.,





Almost surely.

lim
T→∞

1
T

T

∑
t=1

f(xt, yt) ∈ S

• Blackwell 1956 showed the original result and algorithmic construction 

•This framework is at the heart of many problems in online learning and 
multi objective optimization.



The Action Space Game

Consider a repeated normal form game with 
X = Δm and Y = Δn

We define a vector valued function  with  
 

i.e. the indicator function for each action pair.

f : X × Y → ℝmn

fij(x, y) := xiyj

The time average function value  

tracks the empirical distribution over action pairs. We 

call its limit average   the 

Correlated Strategy Profile (CSP).

pT =
1
T

T

∑
t=1

xt ⊗ yt

ϕ = lim
T→∞

1
T

T

∑
t=1

xt ⊗ yt

• Big Idea : Every learning algorithm A is a 
Blackwell Approachability algorithms for some 
set in . 


• Define the menu of A to be the inclusion minimal 
set among all such sets.


• Claim : This inclusion minimal set is uniquely 
defined.

ℝmn



Algorithms -> Menus
• The convex hull of all CSPs that 

can be induced by playing 
against algorithm A 

• The inclusion minimal menu for 
which A is a Blackwell 
Approachability Algorithm. 

• Menus drop some information, 
but simplify the problem by only 
preserving outcomes without 
telling us how to get them.

Each point in the menu is a CSP , that records the empirical statistics of some transcript of play 

against this algorithm.

ϕ = lim
T→∞

1
T

T

∑
t=1

xt ⊗ yt



Menus are all You Need



Learner and Optimizer Payoffs

• The optimizer’s payoff is a linear 
objective/ direction in  

• The optimizer can simply pick 
their preferred extreme point 
maximizing their payoff. 

• This, in turn, also fixes the payoff 
of the learner. 

ℝmn

ϕ = lim
T→∞

1
T

T

∑
t=1

xt ⊗ yt



Comparing Two Learning Algorithms

• The optimizer’s payoff is a linear 
objective/ direction in  

• The optimizer can simply pick 
their preferred extreme point 
maximizing their payoff. 

• This, in turn, also fixes the payoff 
of the learner. 

• Simultaneous evaluation with two 
algorithms and their menus to 
compare their performance 
against a given optimizer. 

ℝmn



Verifying No-Regret and No-Swap-Regret
• External Regret and swap-regret 

are both verifiable using the CSP 

 

• An algorithm is no-(swap)-regret 
only if it’s menu entirely consists 
of CSPs with non-positive (swap)-
regret. 

• Define all CSPs with non-positive 
regret and call it  — this is 
the one sided coarse correlated 
equilibrium polytope.  

• An algorithm A is no-regret only if 
 

ϕ = lim
T→∞

1
T

T

∑
t=1

xt ⊗ yt

MNR

M(A) ⊆ MNR

M(A)

MNR

MNR = ϕ ∈ Δmn : ∑
i∈[m],j∈[n]

ϕi,juL(i, j) ≥ max
i*∈[m] ∑

i∈[m],j∈[n]

ϕi,juL(i*, j)



Menus are all you Need

• Proving geometric properties about 
menus translates into proving results 
about algorithms


• Pareto-Optimality can also be written as a 
property of menus.


• Non-Manipulability — All extreme points 
CSPs are product distributions.

For example: this picture is a certificate that 
algorithm does not dominate algorithm .𝒜1 𝒜2



Pareto-Optimality via Menus



Pareto-Optimality via Menus   

Theorem: All No-Swap Regret Algorithms have the same menu  (    )MNSR

Note : Of particular interest in the light of new, significantly different 
NSR algorithms ([DDFG 23], [PR 23]) to go with [BM 07] 



Invalid menu!

Theorem: All No-Swap Regret 
Algorithms have the same menu

● Call   the convex hull of all no-swap 
regret CSPs  

● Every no-swap regret menu is tautologically 
contained within it. 

● Theorem:  is an inclusion-minimal 
response-satisfiable set in the action space 
game. 

● Corollary : All NSR menus collapse to the 
same set .

MNSR

MNSR

MNSR MNSR = ϕ ∈ Δmn : ∑
i∈[m], j∈[n]

ϕi, juL(i, j) ≥ max
π:[n]→[n] ∑

i∈[m], j∈[n]

ϕi, juL(π(i), j)



Inclusion Minimality implies PO!

Theorem: All inclusion minimal menus containing  are PO.L+

MNSR = ϕ ∈ Δmn : ∑
i∈[m], j∈[n]

ϕi, juL(i, j) ≥ max
π:[n]→[n] ∑

i∈[m], j∈[n]

ϕi, juL(π(i), j)

•All NSR algorithms have the same menu. 
•This menu is minimal, and therefore Pareto-Optimal.

•  is a polytope whose extreme points are Stackelberg equilibria of the one-shot 
game with the optimizer as the leader and the learner as a follower (recovering a 
result of DSS 19). 

•Thus, all NSR algorithms are non-manipulable. 
•Playing a No-swap-regret algorithm is a way for a learner to exchange the power of 

commitment with the optimizer, an idea we have explored in the context of 
algorithmic collusion.

MNSR

 is the maximum value action pair.L+



Inclusion Minimality and PO
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1. Start with an “extra” vertex in  
2. Construct a path of strictly increasing  value 
3. Find a “crossover” edge

M2
uL

uL
M(A1) M(A2)

Key

M(A2) \M(A1)

M(A1)

Lemma : If  contains  and , then there is an Optimizer payoff  such that M1 L+ M2\M1 ≠ ∅ uO

uL(M1, uO) > uL(M2, uO)

Toy Proof : Where both menus are polytopes, a path following 
argument suffices.

Key Idea : To show a menu is Pareto-optimal, only need a single 
certificate of non-domination against any other menu.



FTRL is Pareto-dominated
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Pareto-Domination

If Algorithm A is no-regret, then MNSR ⊆ M(A)

41

• A route to Pareto-Domination: Show that certain “bad” 
points can be removed from the menu.


• Tricky Aspect : While menus are upwards closed, 
removing points might break their response-satisfiable 
property.


• Silver Lining : Every no-regret menu contains the 
canonical no-swap-regret menu.



FTRL
Only moves within  of being the historical best-response action get non-trivial, i.e.,   mass. o(T ) ΩT(1)

All Follow-the-Regularized Leader type algorithms, 
including Multiplicative Weights (Hedge), Online 
Gradient Descent are Mean-Based No-Regret 

Algorithms

Given that R is continuous and strongly-convex, and  

:
ηT =
1

o(T)

yt = arg max
y∈Δn (

t−1

∑
s=1

uL(xs, y) −
R(y)
ηT )

42

•FTRL algorithms can be shown to contain 
“bad” points via the “mean-based” 
property. 

•Deleting bad points via showing that 
FTRL algorithms have a polytope menu.



FTRL Menus are Polytopes
Mean-Based Trajectories

Trajectory has a ``clear" leader for all but o(T) time steps.

B
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SAB

SBC

SAC

HAB

HBC

SBC

HAC SAC
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Connection: All FTRL algorithms 
are mean-based, i.e. they almost 
always play ``clear” leaders.

B

A

C

uA − uC

uB − uC
SAB

HAB

SAB •FTRL algorithms have a special state space. 

•Key Idea: Show that w.l.o.g, the optimal response 
trajectory (through the FTRL state space) satisfies some 
constraints.  

•These constraints ensure that the menu has a finite 
number of extreme points, i.e., is a polytope.



Menus: A geometric view of algorithms

● Algorithms -> Menus 
○ Useful for analysis of pre-existing algorithms, capture various properties of interest 

● Menus -> Algorithms 
○ Fully understand what convex sets are “feasible” menus 
○ Useful new tool for algorithm design: design the space of possibilities you want (as long as it’s response-

satisfiable), then “invert” the menu to obtain an algorithm —> via Blackwell + A Padding Argument



Learning to Play Against Unknown Opponents

Eshwar Ram Arunachaleswaran, Natalie Collina, Jon Schneider 

In Submission (Arxiv soon)
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Public Prior over Optimizer Types

Distribution D over types

Tension between learning, optimization and 
accounting for strategic masking. 

What is the optimal (No-Regret) algorithm to commit to?
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?
uL, D

L
O

O

O

Public Prior over Optimizer Types

Distribution D over types

Based upon techniques from Blackwell 
Approachability: 

• Poly-time algorithm for finding the 
optimal no-regret commitment 

• Efficient Algorithms for finding optimal 
algorithm overall for either constant sized 
games or constant number of types.

What is the optimal (No-Regret) algorithm to commit to?



Online Learning and Repeated Games 

• Algorithmic Collusion Without Threats 
(ITCS 2025): Models emergent collusion 
mechanisms in repeated games. 

• An Elementary Predictor Obtaining 
Distance to Calibration (SODA 2025) 

• Pareto-Optimal Algorithms for Learning in 
Games (EC 2024) 

• Efficient Stackelberg Strategies for Finitely 
Repeated Games (AAMAS 2023) 

• Learning to Play Against Unknown 
Opponents (in submission)

Algorithmic Fairness and Machine Learning 

• Oracle Efficient Algorithms for Groupwise Regret (ICLR 
2024): Proposes regret-based approaches for fairness 
at group levels. 

• Wealth Dynamics Over Generations: Analysis and 
Interventions (SATML 2023): Analyzes intergenerational 
dynamics and interventions for fairness. 

• Pipeline Interventions (ITCS 2021, Math. Operations 
Research 2022): Addresses fairness in biased 
decision-making pipelines.

Fair Division and Equilibrium Computation 

• Fully Polynomial-Time Approximation Schemes 
for Fair Rent Division (SODA 2019, Math. 
Operations Research 2022): 

• Fair and Efficient Cake Division with Connected 
Pieces (WINE 2019):  

• Fair Division with a Secretive Agent (AAAI 
2019)
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