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Motivation

Algorithms are used to make Decisions in Strategic Environments
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Motivation

Algorithms are Strategies in Repeated Games

What makes learning to play games difficult (and interesting)?
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T A et Ml e \/\/ithout knowing the nature of the other players, impossible to find
the optimal algorithm/ policy.

What makes learning to play games more tractable than
arbitrary adversarial environments?

e Opponents behavior might reveal their nature.

e \\Vith rational opponents, the environment is not arbitrary since they
are consistently optimizing for some (potentially unknown)
objective.
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Algorithms as Strategies

For Repeated Games

Some Issues and Questions

Scenario : Algorithms for Repeated Games

e [act: No-Regret is not always a best response to No-Regret.
e \What does an (algorithmic) best-response to no-regret look like?
e \What behavior can interaction between algorithms induce?

Theory CS Answer : No-Regret Algorithms!

Fact : All players playing no-(swap)-regret
leads to convergence on average to (Coarse)

Correlated Equilibria Central Question : No-regret algorithms (and variants) represent the
best we can do for arbitrary online environments. Can we ask for
stronger properties in repeated games?

Sneak Peek

* Pareto-Optimality
* Non-Manipulability
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The Model

Learners and Optimizers




Repeated Games

The action space is algorithms

Round 1 Round 2 Round 3 Round T

Can be adaptive and time-dynamic



Two Player Repeated Games

Two player asymmetric setup with one
player called the “learner” and the other
called the “optimizer”

O e The Learner has an action set A,
e The Optimizer has an action set A

e [hey simultaneously play actions x,, y,in the t-th round
and then observe the other player’s action.

e Bilinear utility functions u;, u,



The Learner Algorithm

First t-1 optimizer
actions yi1,ya, - Yi

>

Learning Algorithm A
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The Learner Algorithm

The learner publicly commits
to a learning algorithm




The Optimizer’s Role

he optimizer has full information about the

environment and plays the optimal sequence of
moves to maximize their private payoft
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Nis sequence induces a particular transcript of
ay maximizing the optimizer payoff and thus
so fixes the learner’s payoft




Best-responses to Algorithms




Our Question

Given this setup, what learning algorithm should the learner commit to to
maximize their own (limit average) payoff ?

First -1 optimizer
actions yi1,ya, - Yt

>

| earning Algorithm A

Lt41




Full-information Setting

=

® Knowing the optimizer’s payoff upfront
implies the existence of a well defined
bilevel optimization problem for the
learner.

® |n particular, the learner can assess the
payoff associated with any commitment
by simulating a rational optimizer
response.




The Stackelberg Equilibrium Problem

With algorithms as strategies

Efficient Stackelberg Strategies for Finitely Repeated Games

Natalie Collina', Eshwar Ram Arunachaleswaran!, and Michael Kearns!

1University of Pennsylvania
{eshwar, ncollina, mkearns}@cis.upenn.edu




Learning Setting

O

—very algorithm induces different
outcomes depending on the
optimizer utility

e Need new technigues to handle this




What are good learning algorithms to use?

Optimistic: Pointwise optimality against all optimizers x

Our answer:. No-Regret + Pareto-Optimality

Standard benchmark: No-Regret on every transcript

«

\

Multiplicative
weights, etc.

N
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No-Regret Algorithms

Z UL(Xtayt) > (max Z UL(Xt,y*)) — O(T)

y*€ln] 4=

Competitive with the best fixed action in hindsight on
every transcript

eLXistence implied by the minimax theorem.

o[

P
O

eMultiple Algorithms exist — including
multiplicative weights, Follow-the-Perturbed-
_eader, Gradient Descent, etc.

ficient algorithms exist even tor some
'oblems with large action spaces — such as

nline shortest path



Pareto-Optimality

Comparing Algorithms : Three Possible Outcomes

. The algorithms do equally well

e[-ach learning algorithm has an associated infinite
orofile of payofts measured against all possible
optimizers.

o A Pareto-Optimal learning algorithm has a payoff
profile on the Pareto-frontier.

o All other algorithms are Pareto-dominated, and thus
there is a natural reason to never use such
algorithms.

. Algorithm A does better

. Algorithm B does better

Question: Does a non-trivial Pareto-dominated algorithm exist?



Result 1 : Popular No-Regret Algorithms are Pareto-Dominated

Theorem 1 : All Follow-the-Regularized-Leader algorithms, which include Multiplicative Weights, FTPL, Lazy

Gradient Descent, are Pareto-dominated.

B i Sap .
" e Results based on a (oartial) characterization of best-response
seqguences against FTRL algorithms.
A
o N VA e These algorithms have lacunae (that can be eliminated) due to a
Ssc \ oroperty they share, called the “mean-based” property.

C representation.

EAC Hac Sac

* [he dominating algorithms do not necessarily have a succinct



Result 2 : No-Swap-Regret Algorithms are Pareto-Optimal

Theorem 2 : All No-Swap-Regret algorithms are Pareto-Optimal. Additionally, all no-swap-regret algorithms
are strategically equivalent in terms of the limit average payoff.

T T e NSR is a strengthening of the no-regret

Z Ur(Xe, Yt) = max[n] Z up (X, m(yt)) — o(T). property.
T . —>
t=1 t=1
o[irst explicit construction by Blum and Mansour
(06).
Competitive with the best fixed action on the * Recent results (DDFG 24 and PR 24) show
subsequence that action i is played, for all | fundamentally different constructions that

in [Nn]. reduce no-swap-regret to no-regret.



Related Work

Non-Manipulability
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Non-Manipulability

A learning algorithm is non-manipulable if the
optimizer has a best-response that is static
over time.

Useful as a stability property for applications:

For eg: Against a NSR bidder in a repeated auction, setting
reserve prices using the Myerson Distribution is optimall

Known Results — DSS 19 show that
1. All NSR algorithms are non-manipulable.

2. Mean-based NR algorithms (such as MW) are
manipulable.

Our Strengthening: Any non-manipulable NR
algorithm must be a NSR algorithm.

Ongoing work : Tight characterization of non-
manipulablility beyond normal-form games



Space of Algorithms

Pareto-Optimal Pareto-Dominated

® An infinite continuum of NR + PO as well
_ as NR + Pareto-Dominated

® Unresolved status : Projected Gradient
algorithms

Descent, Regret Matching

No-Regret

Non-Manipulable

® Different results for special subclasses of
games, for eg: repeated first-price
auctions

Linear-Regret



Inverse Blackwell Approachability



Minimax Theorems

Von Neumann Minimax Theorem

l.e. No difference between going first and second

Consider a bilinear functionf : X X Y - R
for convex action sets X and Y.

MiN,cyMax,cx flx,y) = MaX,cxMin,cy

Alternative Statement : Let v =

min,cymax,cx f(x, y). There exist an action

x € X such that for all actions y € ¥,
flx,y) € [v, 0]

A Vector Valued Minimax Theorem?

Consider a bilinear vector valued functionf : X X Y — RX

A closed, convex set S is said to be
response-satisfiable if for all y € ¥,
there exists x € X such that

f(x,y) € S, i.e. player 1 can
guarantee an outcome in S by going
second

Can Player 1 guarantee an outcome in S by going first instead?

No, But...



Blackwell Approachability Theorem

A Vector valued Minimax Theorem in Algorithm Space

Theorem (Informal) : There exists an algorithm for player 1 such

Consider a bilinear vector valued function £ : X X ¥ — RK for 4 that for any induced transcrl_pt of play, the limit average function
| | | value vector approaches S, i.e.,
repeated vector valued game with actions X,, y, in the t-th round
1 L
lim — Z f&x,y) €S
T—oo 1 —1
Almost surely.

A closed, convex set S is said to be e Blackwell 1956 showed the original result and algorithmic construction
response-satisfiable if for all y € Y, there
exists x € X such that f(x, y) € 3, i.e. player e This framework is at the heart of many problems in online learning and
1 can guarantee an outcome in S by going
second

multi olbjective optimization.




The Action Space Game

Consider a repeated normal form game with

X=A"and Y = A"
* Big ldea : Every learning algorithm A'is a
Blackwell Approachability algorithms for some

set in R™",
We define a vector valued function f : X X ¥ — R with
Ji(x, ) 1= x;y; » Define the menu of A to be the inclusion minimal
i.e. the indicator function for each action pair. set among all such sets.

* Claim : This inclusion minimal set is uniquely

l - .
The time average function value p; = = Z X Qy, defined.

=1

tracks the empirical distribution over action pairs. We
T

call its limit average ¢p = llm — ) x, ® y, the
T-oo 1 —1

Correlated Strategy Profile (CSP).



Algorithms -> Menus

® [he convex hull of all CSPs that
can be induced by playing

® [he Inclu

against algorithm A

sion minimal menu for

which A is a Blackwell

Approac
M(A) o \/Ienqs a
OUt SIMpP
telling us
1L
Each point in the menu is a CSP ¢ = lim e x, @ y,, that records the empirical
I'— o0

=1
against this algorithm.

nability Algorithm.

rop some information,
ify the problem by only

oreserving outcomes without

how to get them.

statistics of some transcript of play



Menus are all You Need



Learner and Optimizer Payoffs

® [he optimizer’s payoff is a linear
objective/ direction in R™"

® [he optimizer can simply pick
their preferred extreme point
maximizing their payof.

® [his, in turn, also fixes the payoft
of the learner.




Comparing Two Learning Algorithms

® [he optimizer’s payoff is a linear

® [he optimizer can simp
their preferred extreme
maximizing their payof.

objective/ direction in R™"

y pick

NoINt

® [his, in turn, also fixes the payoft

of the learner.

® Simultaneous evaluation with two
algorithms and their menus to
compare their performance
against a given optimizer.



Verifying No-Regret and No-Swap-Regret

e xternal Regret and swap-regret
are both verifiable using the CSP
1
$=Im— ) x Yy,

T—oo 1
=1

® An algorithm is no-(swap)-regret
only If it’s menu entirely consists
of CSPs with non-positive (swap)-
regret.

® Define all CSPs with non-positive

regret and call it Myp — this is

the one sided coarse correlated
equilibrium polytope.

i€[m],jeln] i€[m],je(n]

My = {45 cA™: N i)z max Y (i j)} ® An algorithm A is no-regret only if
i*e[m] .
M(A) C My



Menus are all you Need

* Proving geometric properties about
menus translates into proving results
about algorithms

* Pareto-Optimality can also be written as a
property of menus.

 Non-Manipulability — All extreme points
CSPs are product distributions.

Uur,

For example: this picture is a certificate that
algorithm & does not dominate algorithm &/ ,.



Pareto-Optimality via Menus



Pareto-Optimality via Menus

Theorem: All No-Swap Regret Algorithms have the same menu ( Myp )

Note : Of particular interest in the light of new, significantly different
NSR algorithms ([DDFG 23], [PR 23]) to go with [BM 07]



M NSR

Theorem: All No-Swap Regret
Algorithms have the same menu

e Call My¢p the convex hull of all no-swap
regret CSPs

e [very no-swap regret menu is tautologically
contained within .

e Theorem: My is an inclusion-minimal

response-satisfiable set in the action space
game.

e Corollary : All NSR menus collapse to the

same set My¢p. My=4¢e€am: Y gz max Y g u ), j)}

ic[m),jeln] =i et

Invalid menu!




Inclusion Minimality implies PO!

Theorem: All inclusion minimal menus containing L™ are PO.

L™ is the maximum value action pair.

e All NSR algorithms have the same menu.
® [his menu is minimal, and therefore Pareto-Optimal.

e M\p is a polytope whose extreme points are Stackelberg equilibria of the one-shot

game with the optimizer as the leader and the learner as a follower (recovering a
result of DSS 19).
e Thus, all NSR algorithms are non-manipulable.
¢ Playing a No-swap-regret algorithm is a way for a learner to exchange the power of
} commitment with the optimizer, an idea we have explored in the context of
algorithmic collusion.

Mpysr = {¢ €A™ Z ¢; ju(i,j) = max Z b, jur (2(@0), )

m:[n]—=[n] .

i€[m],j€[n] i€[m],j€ln]



Inclusion Minimality and PO

Lemma : If M, contains L™ and M,\M, # @&, then there is an Optimizer payoff u,, such that

M(Ay)

M(Ay)

N/

u;(My, up) > u;(M,, u,)

Key

o M(A) \ M(A)
® M(.A1)

Key ldea : To show a menu Is Pareto-optimal, only need a single
certificate of non-domination against any other menu.

Toy Proof : Where both menus are polytopes, a path following
argument suffices.

1.

Start wit

N an “extra” vertex in M,

2. Gonstruct a path of strictly increasing u; value

3.

39
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a “crossover’ edge



FTRL i1s Pareto-dominated



Pareto-Domination

A route to Pareto-Domination: Show that certain “bad”
points can be removed from the menu.

* [ricky Aspect : While menus are upwards closed,
removing points might break their response-satisfiable

property.

* Silver Lining : Every no-regret menu contains the
canonical no-swap-regret menu.

If Algorithm A is no-regret, then Myqp € M(A)

41



FTRL

Only moves within o(7') of being the historical best-response action get non-trivial, i.e., {2-(1) mass.

Given that R is continuous and strongly-convex, and

Nt = o(T):

—1
R(y)
y, = argmax [ " u(x,.y)

yeA" 1 ﬂT

All Follow-the-Regularized Leader type algorithms,
including Multiplicative Weights (Hedge), Online
Gradient Descent are Mean-Based No-Regret
Algorithms

42

o - TRL algorithms can be shown to contain
“bad” points via the “mean-based”

property.

® Deleting bad points via showing that
FTRL algorithms have a polytope menu.



FTRL Menus are Polytopes

Mean-Based Trajectories

Trajectory has a clear" leader for all but o(T) time steps.

Connection: All FTRL algorithms
are mean-based, i.e. they almost
always play clear” leaders.

43

® - [RL algorithms have a special state space.

® Key ldea: Show that w.l.0.g, the optimal response
trajectory (through the FTRL state space) satisfies some
constraints.

® [hese constraints ensure that the menu has a finite
number of extreme points, 1.e., IS a polytope.



Menus: A geometric view of algorithms

e Algorithms -> Menus
o Useful for analysis of pre-existing algorithms, capture various properties of interest

e Menus -> Algorithms

o Fully understand what convex sets are “feasible” menus
o Useful new tool for algorithm design: design the space of possibilities you want (as long as it’s response-
satisfiable), then “invert” the menu to obtain an algorithm —> via Blackwell + A Padding Argument




| earning to Play Against Unknown Opponents

Eshwar Ram Arunachaleswaran, Natalie Collina, Jon Schneider

In Submission (Arxiv soon)



Public Prior over Optimizer Types

What is the optimal (No-Regret) algorithm to commit to”

@ Tension between learning, optimization and

accounting for strategic masking.

46

ﬁtribution D over types
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Public Prior over Optimizer Types

What is the optimal (No-Regret) algorithm to commit to? K \
Distribution D over types

Based upon technigques from Blackwell
Approachabillity:

e Poly-time algorithm for finding the
optimal no-regret commitment

o [fficient Algorithms for finding optimal
algorithm overall for either constant sized

games or constant number of types.
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